流水线打螺丝并不是一件容易的事,大力出奇迹会滑丝,过小又无法拧到位,要想把螺丝打的丝滑和恰到好处,就需要控制螺丝的拧紧程度,那该如何控制呢?
在螺栓拧紧过程中,总体的受力情况是螺栓受拉而连接件受压,大致分为以下几个阶段:
1. 开始拧紧时,由于螺栓头靠近工件,压紧力为零。但由于存在摩擦力,扭矩保持较小的数值。
2. 螺栓头部靠近工件后,真正的拧紧开始,压紧力和扭矩随转角的增加而迅速上升。
3. 达到屈服点后螺栓开始塑性变形,转角增加较大而压紧力和扭矩却增加较小,甚至不变。
4. 继续拧紧,力矩和压紧力下降,直至螺栓断裂。
1. 扭矩控制法
扭矩控制是指拧紧螺栓至设定的扭矩后,拧紧控制机构停止动作。这种方法简便且扭矩容易复验,常用于不涉及安全方面的拧紧,如车体组件和家电等。
扭矩法精度受螺栓材质、加工精度、润滑状态和拧紧速度等因素影响,导致螺纹表面之间和螺母承压面的摩擦系数变化。为了保证一定的预紧力,通常采用较高的设计余量来弥补扭矩控制带来的误差。
2. 扭矩控制角度监控
在扭矩控制法中,将拧紧扭矩作为控制参数,拧紧角度作为监控值。这种方法可以鉴别螺栓的异常状态,常用于车轮、车身、发动机和变速箱等工位。
在正常情况下,拧紧扭矩和角度基本呈线性变化,变化率基本恒定。扭矩控制角度监控具有扭矩控制、角度监控、测量简便和使用标准螺栓可重复等特点,但夹紧力波动较大。
3. 角度控制扭矩监控
在扭矩转角控制法中,将拧紧角度作为控制参数,将螺栓拧紧到某一扭矩值后,再以目标角度拧紧。这种方法常用于连杆、发动机主轴承、飞轮、发动机缸盖、刹车盘卡钳和转向器等工位。
扭矩/转角控制法的夹紧力变化较小,具有角度控制、扭矩监控和较小的摩擦影响等特点,但螺栓不能重复使用。
4. 屈服点控制法
屈服点控制法是通过拧紧螺栓至屈服点后停止拧紧来实现高精度拧紧的方法。这种方法利用材料屈服时的特性进行控制,但需要严格的试验或检测以防止螺栓和螺纹损坏或断裂。
屈服点控制法能够得到较大的预紧力,并且预紧力不受摩擦系数变化的影响。常用于安全相关部件或发动机内的高可靠性部件,如制动器、发动机缸盖和液压泵等工位。
在制造业的广阔天地里,螺栓连接作为结构稳固的基石,其性能直接影响着产品的整体安全性和使用寿命。然而,随着时间的推移和环境的变迁,螺栓连接往往会出现扭矩衰减的现象,这不仅降低了连接的紧密度,还可能引发安全隐患。今天,我们就来探讨如何通过优化拧紧策略,有效降低螺栓连接的扭矩衰减,确保结构的稳固与可靠。
在工业自动化领域,阶梯式螺丝供料设备凭借其独特的工作原理展现出显著的技术优势,成为精密装配领域的重要解决方案。
在现代工业制造的广阔舞台上,伺服智能电批以其独特的智能特性脱颖而出,成为提升生产效率、确保装配精度及实现数据追溯的重要工具。以坚丰伺服智能电批为例,让我们深入探索其多项核心功能。
坚丰智能电批以其卓越的智能化设计,集成了多种先进的拧紧方式,能够灵活应对各类复杂多变的拧紧任务。其内置的智能控制系统,通过精确执行预设的拧紧参数与算法,实现了对螺丝拧紧过程的精细化操控,旨在不仅达成所需的预紧力标准,更确保了拧紧作业的高效、稳定与可靠。
坚丰智能电批在螺栓紧固作业中,其拧紧曲线作为关键性能指标,直观展示了扭矩、速度、角度等参数随时间变化的动态过程。这一曲线不仅是评估拧紧质量的直接依据,更如同“健康监测仪”,能够精准捕捉拧紧过程中的任何异常迹象,如扭矩失控、螺钉材质问题、螺纹损伤或工具失效等,并即时发出警告,确保操作安全及装配质量。
在自动化装配线的日常运作中,每个工位均依赖螺丝送料机来保持装配流程的顺畅。然而,为了进一步优化资源配置并削减生产成本,我们推出了一个创新且高效的解决方案:利用JOFR坚丰一出四螺丝送料机搭配分钉器,实现多工位自动送钉。
随着汽车工业的飞速发展与安全标准的不断提升,方向盘作为驾驶安全的核心枢纽,其装配工艺的精细度与可靠性已成为不可忽视的关键。方向盘结构的复杂性与重要性,要求每一颗螺丝的拧紧都必须达到极致的精准与稳定,任何细微的松动都可能成为安全隐患的源头。
在汽车装配过程中,拧紧是一项极其重要的工作。由于汽车零部件数量众多且形状各异,需要使用不同类型的拧紧工具和拧紧方法。常见的拧紧工具有气动拧紧枪、电动拧紧枪、电流式及传感器式拧紧枪等。
近年来,汽车召回事件频繁发生,其中因螺栓未正确拧紧导致的问题占据一定比例。这种看似微小的失误,却可能给汽车的安全性和可靠性带来严重影响,甚至引发重大事故。因此,螺栓拧紧质量的控制显得尤为重要。
随着汽车制造智能化趋势的加速,螺栓装配的要求也日益提升。特别是在汽车总装、四门两盖、制动系统等关键部位,不仅需要确保夹紧力可靠,还要保证拧紧数据的实时传输,不容有失。JOFR坚丰智能拧紧工具控制器应运而生,成为这一领域的佼佼者。