电池模组铜牌在电动汽车电池组中起到重要的连接作用,确保电流的传输和分配。在电池包的装配过程中,高压铜牌的安装十分关键。如果铜排连接松动,会导致接触电阻增大,进而引发发热和熔断的严重后果。
造成铜排螺栓松动的主要原因是在生产过程中未正确拧紧。动力电池的工作电流较大,如果铜排螺栓出现松动,会导致接触电阻增加,发热量增加,进一步加速铜排氧化电阻增大的循环,最终导致电池性能下降、铜排熔断和供电系统瘫痪的严重后果。
为解决这个问题,装配过程中需要保证铜排螺栓的扭矩符合设计要求。扭矩过大会导致螺栓断裂和设备老化,扭矩过小则容易导致螺栓松动和产生严重后果。此外,电池模组中涉及到的固定螺栓,对于拧紧质量有更为严格的要求,特别是拧紧顺序和残余扭矩要求,以保证拧紧应力分布均匀。
为优化电池模组铜牌的装配过程,可以采用坚丰提供的完整的拧紧系统平台。该平台支持不同工具的连接,满足不同工位的要求,能够实现较少硬件投入、安装成本和维护投入的目标。
此外,坚丰智能拧紧工具可提高螺栓拧紧的准确度和稳定性,并收集拧紧数据,如扭矩、角度、曲线等。这些数据可与生产系统MES进行对接,供后期工艺改进,解决装配过程追溯和质量问题。
在螺栓拧紧顺序和定位控制这一核心工艺上,坚丰配备了定位力臂和引导软件,大大减少了错拧、重复拧紧、漏拧等问题。
针对涉及到安全隐患的绝缘要求,坚丰提供了完善的解决方案:
1. 工具端转接件绝缘:在批头/套筒与工具之间增加绝缘材料;
2. 模组绝缘:在工具安装座、枪头安装座、吸钉座下方增加绝缘块;
3. 一体化模组部分绝缘:在工具与套筒之间、工具与模组壳体之间添加绝缘材料。
这些改进措施可以实现1000V以内的绝缘能力,确保装配过程的安全性。
反力臂,作为拧紧枪的辅助装置,其功能在于支撑拧紧枪,并为操作者提供一个平稳的移动平台,确保拧紧过程的顺利进行。针对手持拧紧枪何时需要配备反力臂的问题,专业人士给出了明确建议:当扭矩超过4Nm时,建议搭配使用反力臂。
在制造业的精密装配领域中,螺栓拧紧机以其高效、精准的特性,尤其是在汽车制造行业,扮演着不可或缺的角色。它不仅确保了螺栓或螺母被牢固地拧紧,还极大地提升了装配的整体质量和可靠性。今天,我们就以坚丰螺栓拧紧机为例,深入剖析其组成部分及选型要点。
在现代工业生产中,手持伺服扭力电批已成为不可或缺的工具。为确保其高效、安全地运行,并始终保持最佳性能,本指南将详细介绍手持伺服扭力电批的操作规程与校准方法。通过遵循这些指导原则,操作人员能够充分发挥电批的功能,同时确保工作环境的安全与整洁。
在制造业中,拧螺丝环节一直面临着招工难、人工装配一致性难以保障等问题。随着自动化技术的不断发展,越来越多的生产工厂开始采用自动送钉方案,以减少人力需求并提高生产效率。自动送钉方案在捡钉、放钉、投料等机械化操作中展现出明显的速度与可靠性优势。
在追求生产效率的工业制造领域,扭矩过冲问题如同一道难以逾越的坎,阻碍着设备性能的完美发挥。扭矩过冲,即实际扭矩值超越预设范围,其危害不容小觑:螺栓的塑性变形乃至断裂、连接部件的松动、密封面的失效,以及设备整体寿命的缩短,无一不在威胁着生产的稳定与安全。
坚丰传感器式拧紧工具,利用先进的传感器技术,对拧紧过程进行实时监控,确保紧固件的拧紧力度达到预设值,为现代制造业带来了 ** 性的改变。这款工具不仅提高了工作效率和产品质量,而且操作简便,提高了拧紧作业的可靠性和可追溯性。
近年来,汽车召回事件频繁发生,其中因螺栓未正确拧紧导致的问题占据一定比例。这种看似微小的失误,却可能给汽车的安全性和可靠性带来严重影响,甚至引发重大事故。因此,螺栓拧紧质量的控制显得尤为重要。
带垫片螺丝是一种头部带有垫圈的特殊螺丝,垫圈通常由橡胶、塑料或金属等材料制成,具备多种功能,如缓冲、隔离、防水、防震和防松。带垫片螺丝在防水和减震方面表现更出色。
随着科技的飞速进步,智能制造已成为制造业转型的必然趋势。在这一背景下,智能拧紧枪作为智能制造的核心设备之一,正逐渐成为车企关注的焦点。本文将深入探讨智能拧紧枪在车企生产中的应用及其带来的影响。
在自动化装配领域,拧紧装配线的集成效率一直是自动化设备线体商所追求的目标。然而,他们在现场安装接线、编程调试等环节中常常遭遇诸多挑战,如自动送钉与拧紧的整体方案不清晰、设备调试异常频发等,这些问题严重影响了项目的顺利验收与实施进度。